Modeling the structure-property relationships of nanoneedles : A journey toward nanomedicine

(c) 2008 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 30(2009), 2 vom: 30. Jan., Seite 275-84
Auteur principal: Poater, Albert (Auteur)
Autres auteurs: Saliner, Ana Gallegos, Carbó-Dorca, Ramon, Poater, Jordi, Solà, Miquel, Cavallo, Luigi, Worth, Andrew P
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, Non-U.S. Gov't Nanotubes, Carbon
Description
Résumé:(c) 2008 Wiley Periodicals, Inc.
Innovative biomedical techniques operational at the nanoscale level are being developed in therapeutics, including advanced drug delivery systems and targeted nanotherapy. Ultrathin needles provide a low invasive and highly selective means for molecular delivery and cell manipulation. This article studies the geometry and the stability of a family of packed carbon nanoneedles (CNNs) formed by units of 4, 6, and 8 carbons, by using quantum chemistry computational modeling methods. At the limit of infinite-length, these CNNs might act as semiconductors, especially when the number of terminal units is increased. CNNs are also potentially able to stabilize ions around their structure. Therefore, due to the apolar characteristics of CNNs and their ability to carry ionic species, they would be suitable to act as drug carriers through nonpolar biologic media
Description:Date Completed 15.01.2009
Date Revised 18.12.2008
published: Print
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.21041