Active learning methods for interactive image retrieval

Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framewo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 7 vom: 30. Juli, Seite 1200-11
Auteur principal: Gosselin, Philippe Henri (Auteur)
Autres auteurs: Cord, Matthieu
Format: Article en ligne
Langue:English
Publié: 2008
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM180522795
003 DE-627
005 20250209142139.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.924286  |2 doi 
028 5 2 |a pubmed25n0602.xml 
035 |a (DE-627)NLM180522795 
035 |a (NLM)18586627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gosselin, Philippe Henri  |e verfasserin  |4 aut 
245 1 0 |a Active learning methods for interactive image retrieval 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.08.2008 
500 |a Date Revised 30.06.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies 
650 4 |a Journal Article 
700 1 |a Cord, Matthieu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 7 vom: 30. Juli, Seite 1200-11  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:7  |g day:30  |g month:07  |g pages:1200-11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.924286  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 7  |b 30  |c 07  |h 1200-11