Silica nanoparticles at interfaces modulated by amphiphilic polymer and surfactant

The interfacial behavior of silica nanoparticles in the presence of an amphiphilic polymer poly( N-isopropylacrylamide) (PNIPAM) and an anionic surfactant sodium dodecyl sulfate (SDS) is studied using neutron reflectivity. While the nanoparticles do not show any attraction to hydrophilic and hydroph...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 24(2008), 14 vom: 15. Juli, Seite 7346-53
Auteur principal: Alves de Rezende, Camila (Auteur)
Autres auteurs: Lee, Lay-Theng, Galembeck, Fernando
Format: Article en ligne
Langue:English
Publié: 2008
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Gases Surface-Active Agents Water 059QF0KO0R poly-N-isopropylacrylamide 25189-55-3 Silicon Dioxide 7631-86-9
Description
Résumé:The interfacial behavior of silica nanoparticles in the presence of an amphiphilic polymer poly( N-isopropylacrylamide) (PNIPAM) and an anionic surfactant sodium dodecyl sulfate (SDS) is studied using neutron reflectivity. While the nanoparticles do not show any attraction to hydrophilic and hydrophobic surfaces in pure water, presence of the amphiphilic polymer induces significant adsorption of the nanoparticles at the hydrophobic surface. This interfacial behavior is activated due to interaction of the nanoparticles with PNIPAM, the amphiphilic nature of which leads to strong adsorption at a hydrophobic surface but only weak interaction with a hydrophilic surface. The presence of SDS competes with nanoparticle-PNIPAM interaction and in turn modulates the interfacial properties of the nanoparticles. These adsorption results are discussed in relation to nanoparticle organization templated by dewetting of charged polymer solutions on a solid substrate. Our previous studies showed that nanoparticle assembly can be induced to form complex morphologies produced by dewetting of the polymer solutions, such as a polygonal network and long-chain structures. This approach, however, works on a hydrophilic substrate but not on a hydrophobic substrate. These observations can be explained in part by particle-substrate interactions revealed in the present study
Description:Date Completed 15.08.2008
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la8004807