Aligned silicon carbide nanowire crossed nets with high superhydrophobicity

Aligned silicon carbide nanowire crossed nets (a-SiCNWNs) were directly synthesized by using a vapor-solid reaction at 1100 degrees C. Zinc sulfide was used as catalyst to assist the growth of a-SiCNWNs with small size and crystal structure. After functionalization with perfluoroalkysilane, a-SiCNWN...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 24(2008), 13 vom: 01. Juni, Seite 6918-23
Auteur principal: Niu, Jun Jie (Auteur)
Autres auteurs: Wang, Jian Nong, Xu, Qian Feng
Format: Article en ligne
Langue:English
Publié: 2008
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:Aligned silicon carbide nanowire crossed nets (a-SiCNWNs) were directly synthesized by using a vapor-solid reaction at 1100 degrees C. Zinc sulfide was used as catalyst to assist the growth of a-SiCNWNs with small size and crystal structure. After functionalization with perfluoroalkysilane, a-SiCNWNs showed excellent superhydrophobic property with a high water contact angle more than 156 +/- 2 degrees , compared to random nanowires (147 +/- 2 degrees ) and pure silicon wafers (101 +/- 2 degrees ). The topographic roughness and chemical modification with CF 2/CF 3 groups contributed the better superhydrophobicity. Furthermore, the as-grown SiCNWNs can be scraped off and coated on other substrates such as pure silicon wafers. The novel nanowire coating with good superhydrophobicity displays extensive applications in silicon-related fields such as solar cells, radar, etc
Description:Date Completed 15.08.2008
Date Revised 25.06.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la800494h