Grafting of monocarboxylic substituted polychlorotriphenylmethyl radicals onto a COOH-functionalized self-assembled monolayer through copper (II) metal ions
A monocarboxylic substituted polychlorotriphenylmethyl radical (PTMCOOH) has been grafted onto a COOH-functionalized SAM (mercaptohexadecanoic acid, MHDA SAM), using copper (II) metal ions as linkers between the carboxyl groups of the SAM and the ligand. The metal-radical adlayer has been characteri...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1991. - 24(2008), 13 vom: 01. Juni, Seite 6640-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | A monocarboxylic substituted polychlorotriphenylmethyl radical (PTMCOOH) has been grafted onto a COOH-functionalized SAM (mercaptohexadecanoic acid, MHDA SAM), using copper (II) metal ions as linkers between the carboxyl groups of the SAM and the ligand. The metal-radical adlayer has been characterized thoroughly using different surface analysis techniques, such as contact angle, IRRAS, XPS, SPR, ToF-SIMS, SFM, and NEXAFS. The magnetic character was confirmed by EPR. The density of unoccupied states was investigated using X-ray absorption spectroscopy. A low-energy peak in the NEXAFS spectrum directly revealed the presence of partially occupied electronic levels, thus proving the open-shell character of the grafted ligands. SEM measurements on a laterally patterned sample prepared by muCP of MHDA in a matrix of hexadecane thiolate (a CH 3-terminated SAM) was performed to demonstrate that the metal-assisted anchoring of the open-shell ligand occurs selectively on the COOH terminated SAM. These results represent an easy and new approach to anchor organic radicals on surfaces and constitute a first step toward the growth of magnetic metal-organic radical-based frameworks on solid substrates |
---|---|
Beschreibung: | Date Completed 15.08.2008 Date Revised 01.11.2011 published: Print-Electronic ErratumIn: Langmuir. 2011 Oct 4;27(19):12261 Citation Status PubMed-not-MEDLINE |
ISSN: | 0743-7463 |
DOI: | 10.1021/la800771q |