Hierarchical reconstruction using geometry and sinogram restoration

The authors describe and demonstrate a hierarchical reconstruction algorithm for use in noisy and limited-angle or sparse-angle tomography. The algorithm estimates an object's mass, center of mass, and convex hull from the available projections, and uses this information, along with fundamental...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 2(1993), 3 vom: 15., Seite 401-16
1. Verfasser: Prince, J L (VerfasserIn)
Weitere Verfasser: Willsky, A S
Format: Aufsatz
Sprache:English
Veröffentlicht: 1993
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177823208
003 DE-627
005 20250209062503.0
007 tu
008 231223s1993 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177823208 
035 |a (NLM)18296226 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Prince, J L  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical reconstruction using geometry and sinogram restoration 
264 1 |c 1993 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 25.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The authors describe and demonstrate a hierarchical reconstruction algorithm for use in noisy and limited-angle or sparse-angle tomography. The algorithm estimates an object's mass, center of mass, and convex hull from the available projections, and uses this information, along with fundamental mathematical constraints, to estimate a full set of smoothed projections. The mass and center of mass estimates are made using a least squares estimator derived from the principles of consistency of the Radon transform. The convex hull estimate is produced by first estimating the positions of support lines of the object from each available projection and then estimating the overall convex hull using prior shape information. Estimating the position of two support lines from a single projection is accomplished using a generalized likelihood ratio technique for estimating jumps in linear systems. Results for simulated objects in a variety of measurement situations are shown, and several possible extensions to this work are discussed 
650 4 |a Journal Article 
700 1 |a Willsky, A S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 2(1993), 3 vom: 15., Seite 401-16  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:2  |g year:1993  |g number:3  |g day:15  |g pages:401-16 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 2  |j 1993  |e 3  |b 15  |h 401-16