Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences

We develop a recursive model-based maximum a posteriori (MAP) estimator that simultaneously estimates the displacement vector field (DVF) and the intensity field from a noisy-blurred image sequence. Current motion-compensated spatio-temporal noise filters treat the estimation of the DVF as a preproc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 9 vom: 15., Seite 1236-51
1. Verfasser: Brailean, J C (VerfasserIn)
Weitere Verfasser: Katsaggelos, A K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177782862
003 DE-627
005 20250209061719.0
007 tu
008 231223s1995 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177782862 
035 |a (NLM)18292020 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Brailean, J C  |e verfasserin  |4 aut 
245 1 0 |a Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences 
264 1 |c 1995 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 22.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We develop a recursive model-based maximum a posteriori (MAP) estimator that simultaneously estimates the displacement vector field (DVF) and the intensity field from a noisy-blurred image sequence. Current motion-compensated spatio-temporal noise filters treat the estimation of the DVF as a preprocessing step. Generally, no attempt is made to verify the accuracy of these estimates prior to their use in the filter. By simultaneously estimating these two fields, we establish a link between the two estimators. It is through this link that the DVF estimate and its corresponding accuracy information are shared with the other intensity estimator, and vice versa. To model the DVF and the intensity field, we use coupled Gauss-Markov (CGM) models. A CGM model consists of two levels: an upper level, which is made up of several submodels with various characteristics, and a lower level or line field, which governs the transitions between the submodels. The CGM models are well suited for estimating the displacement and intensity fields since the resulting estimates preserve the boundaries between the stationary areas present in both fields. Detailed line fields are proposed for the modeling of these boundaries, which also take into account the correlations that exist between these two fields. A Kalman-type estimator results, followed by a decision criterion for choosing the appropriate set of line fields. Several experiments using noisy and noisy-blurred image sequences demonstrate the superior performance of the proposed algorithm with respect to prediction error and mean-square error 
650 4 |a Journal Article 
700 1 |a Katsaggelos, A K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 4(1995), 9 vom: 15., Seite 1236-51  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:4  |g year:1995  |g number:9  |g day:15  |g pages:1236-51 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 4  |j 1995  |e 9  |b 15  |h 1236-51