A moment-based variational approach to tomographic reconstruction

We describe a variational framework for the tomographic reconstruction of an image from the maximum likelihood (ML) estimates of its orthogonal moments. We show how these estimated moments and their (correlated) error statistics can be computed directly, and in a linear fashion from given noisy and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 5(1996), 3 vom: 15., Seite 459-70
1. Verfasser: Milanfar, P (VerfasserIn)
Weitere Verfasser: Karl, W C, Willsky, A S
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM17771736X
003 DE-627
005 20250209060548.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17771736X 
035 |a (NLM)18285131 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Milanfar, P  |e verfasserin  |4 aut 
245 1 2 |a A moment-based variational approach to tomographic reconstruction 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 20.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We describe a variational framework for the tomographic reconstruction of an image from the maximum likelihood (ML) estimates of its orthogonal moments. We show how these estimated moments and their (correlated) error statistics can be computed directly, and in a linear fashion from given noisy and possibly sparse projection data. Moreover, thanks to the consistency properties of the Radon transform, this two-step approach (moment estimation followed by image reconstruction) can be viewed as a statistically optimal procedure. Furthermore, by focusing on the important role played by the moments of projection data, we immediately see the close connection between tomographic reconstruction of nonnegative valued images and the problem of nonparametric estimation of probability densities given estimates of their moments. Taking advantage of this connection, our proposed variational algorithm is based on the minimization of a cost functional composed of a term measuring the divergence between a given prior estimate of the image and the current estimate of the image and a second quadratic term based on the error incurred in the estimation of the moments of the underlying image from the noisy projection data. We show that an iterative refinement of this algorithm leads to a practical algorithm for the solution of the highly complex equality constrained divergence minimization problem. We show that this iterative refinement results in superior reconstructions of images from very noisy data as compared with the classical filtered back-projection (FBP) algorithm 
650 4 |a Journal Article 
700 1 |a Karl, W C  |e verfasserin  |4 aut 
700 1 |a Willsky, A S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 5(1996), 3 vom: 15., Seite 459-70  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:5  |g year:1996  |g number:3  |g day:15  |g pages:459-70 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1996  |e 3  |b 15  |h 459-70