Tomographic reconstruction and estimation based on multiscale natural-pixel bases

We use a natural pixel-type representation of an object, originally developed for incomplete data tomography problems, to construct nearly orthonormal multiscale basis functions. The nearly orthonormal behavior of the multiscale basis functions results in a system matrix, relating the input (the obj...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 3 vom: 15., Seite 463-78
1. Verfasser: Bhatia, M (VerfasserIn)
Weitere Verfasser: Karl, W C, Willsky, A S
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177695994
003 DE-627
005 20250209060232.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177695994 
035 |a (NLM)18282941 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bhatia, M  |e verfasserin  |4 aut 
245 1 0 |a Tomographic reconstruction and estimation based on multiscale natural-pixel bases 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 19.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We use a natural pixel-type representation of an object, originally developed for incomplete data tomography problems, to construct nearly orthonormal multiscale basis functions. The nearly orthonormal behavior of the multiscale basis functions results in a system matrix, relating the input (the object coefficients) and the output (the projection data), which is extremely sparse. In addition, the coarsest scale elements of this matrix capture any ill conditioning in the system matrix arising from the geometry of the imaging system. We exploit this feature to partition the system matrix by scales and obtain a reconstruction procedure that requires inversion of only a well-conditioned and sparse matrix. This enables us to formulate a tomographic reconstruction technique from incomplete data wherein the object is reconstructed at multiple scales or resolutions. In case of noisy projection data we extend our multiscale reconstruction technique to explicitly account for noise by calculating maximum a posteriori probability (MAP) multiscale reconstruction estimates based on a certain self-similar prior on the multiscale object coefficients. The framework for multiscale reconstruction presented can find application in regularization of imaging problems where the projection data are incomplete, irregular, and noisy, and in object feature recognition directly from projection data 
650 4 |a Journal Article 
700 1 |a Karl, W C  |e verfasserin  |4 aut 
700 1 |a Willsky, A S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 6(1997), 3 vom: 15., Seite 463-78  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:6  |g year:1997  |g number:3  |g day:15  |g pages:463-78 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 6  |j 1997  |e 3  |b 15  |h 463-78