Microdefocusing method for measuring acoustic properties using acoustic microscope

Many papers have been reporting on measuring acoustic properties of materials by acoustic microscopy. In a conventional method of V (z) curve analysis, the phase velocity and the propagation attenuation of a leaky surface acoustic wave (LSAW) are determined from the interference period Deltaz and th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 39(1992), 5 vom: 28., Seite 643-52
1. Verfasser: Kanai, H (VerfasserIn)
Weitere Verfasser: Chubachi, N, Sannomiya, T
Format: Aufsatz
Sprache:English
Veröffentlicht: 1992
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Many papers have been reporting on measuring acoustic properties of materials by acoustic microscopy. In a conventional method of V (z) curve analysis, the phase velocity and the propagation attenuation of a leaky surface acoustic wave (LSAW) are determined from the interference period Deltaz and the slope of the V(z) curve, respectively. For this method it is necessary to measure the V(z) curve for a period several times as long as the interference period Deltaz. Therefore, it is difficult to measure the acoustic properties of a sample with high resolution by the method. In order to overcome these problems, a method called the microdefocusing method is proposed. The method determines the acoustic properties of a sample by analyzing V (z) values measured in the microdefocusing region within an interference period Deltaz near a focal plane. An ultrasonic transducer called the butterfly transducer is proposed to be applied to this microdefocusing method and a digital signal processing procedure is developed to analyze the output of the ultrasonic transducer. Basic experiments are performed to confirm the principles of the new method
Beschreibung:Date Completed 02.10.2012
Date Revised 12.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955