Statistically based methods for anomaly characterization in images from observations of scattered radiation

In this paper, we present an algorithm for the detection, localization, and characterization of anomalous structures in an overall region of interest given observations of scattered electromagnetic fields obtained along the boundary of the region. Such anomaly detection problems are encountered in a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 1 vom: 15., Seite 92-101
1. Verfasser: Miller, E L (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM17750336X
003 DE-627
005 20250209050750.0
007 cr uuu---uuuuu
008 231223s1999 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.736694  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17750336X 
035 |a (NLM)18262868 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Miller, E L  |e verfasserin  |4 aut 
245 1 0 |a Statistically based methods for anomaly characterization in images from observations of scattered radiation 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present an algorithm for the detection, localization, and characterization of anomalous structures in an overall region of interest given observations of scattered electromagnetic fields obtained along the boundary of the region. Such anomaly detection problems are encountered in applications including medical imaging, radar signal processing, and geophysical exploration. The techniques developed in this work are based on a nonlinear scattering model relating the anomalous structures to the observed data. A sequence of M-ary hypothesis tests are employed first to localize anomalous behavior to large areas and then to refine these initial estimates to better characterize the true target structures. We introduce a method for the incorporation of prior information into the processing which reflects constraints relevant directly to the anomaly detection problem such as the number, shapes, and sizes of anomalies present in the region. The algorithm is demonstrated using a low-frequency, inverse conductivity problem found in geophysical applications 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 8(1999), 1 vom: 15., Seite 92-101  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:8  |g year:1999  |g number:1  |g day:15  |g pages:92-101 
856 4 0 |u http://dx.doi.org/10.1109/83.736694  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1999  |e 1  |b 15  |h 92-101