A comparative study on heuristic algorithms for generating fuzzy decision trees

Fuzzy decision tree induction is an important way of learning from examples with fuzzy representation. Since the construction of optimal fuzzy decision tree is NP-hard, the research on heuristic algorithms is necessary. In this paper, three heuristic algorithms for generating fuzzy decision trees ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 31(2001), 2 vom: 15., Seite 215-26
1. Verfasser: Wang, X Z (VerfasserIn)
Weitere Verfasser: Yeung, D S, Tsang, E C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Fuzzy decision tree induction is an important way of learning from examples with fuzzy representation. Since the construction of optimal fuzzy decision tree is NP-hard, the research on heuristic algorithms is necessary. In this paper, three heuristic algorithms for generating fuzzy decision trees are analyzed and compared. One of them is proposed by the authors. The comparisons are twofold. One is the analytic comparison based on expanded attribute selection and reasoning mechanism; the other is the experimental comparison based on the size of generated trees and learning accuracy. The purpose of this study is to explore comparative strengths and weaknesses of the three heuristics and to show some useful guidelines on how to choose an appropriate heuristic for a particular problem
Beschreibung:Date Completed 02.10.2012
Date Revised 04.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0492
DOI:10.1109/3477.915344