Hierarchical tensor approximation of multi-dimensional visual data

Visual data comprise of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop a compact data representation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional dataset is transformed into a hiera...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 14(2008), 1 vom: 10. Jan., Seite 186-99
1. Verfasser: Wu, Qing (VerfasserIn)
Weitere Verfasser: Xia, Tian, Chen, Chun, Lin, Hsueh-Yi Sean, Wang, Hongcheng, Yu, Yizhou
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM17493016X
003 DE-627
005 20250208204706.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0583.xml 
035 |a (DE-627)NLM17493016X 
035 |a (NLM)17993712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Qing  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical tensor approximation of multi-dimensional visual data 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.02.2008 
500 |a Date Revised 12.11.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Visual data comprise of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop a compact data representation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional dataset is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a tensor approximation technique. Our hierarchical tensor approximation supports progressive transmission and partial decompression. Experimental results indicate that our technique can achieve higher compression ratios and quality than previous methods, including wavelet transforms, wavelet packet transforms, and single-level tensor approximation. We have successfully applied our technique to multiple tasks involving multi-dimensional visual data, including medical and scientific data visualization, data-driven rendering and texture synthesis 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Xia, Tian  |e verfasserin  |4 aut 
700 1 |a Chen, Chun  |e verfasserin  |4 aut 
700 1 |a Lin, Hsueh-Yi Sean  |e verfasserin  |4 aut 
700 1 |a Wang, Hongcheng  |e verfasserin  |4 aut 
700 1 |a Yu, Yizhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 14(2008), 1 vom: 10. Jan., Seite 186-99  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:14  |g year:2008  |g number:1  |g day:10  |g month:01  |g pages:186-99 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2008  |e 1  |b 10  |c 01  |h 186-99