Sequential document visualization

Documents and other categorical valued time series are often characterized by the frequencies of short range sequential patterns such as n-grams. This representation converts sequential data of varying lengths to high dimensional histogram vectors which are easily modeled by standard statistical mod...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 13(2007), 6 vom: 01. Nov., Seite 1208-15
1. Verfasser: Mao, Yi (VerfasserIn)
Weitere Verfasser: Dillon, Joshua, Lebanon, Guy
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM174687206
003 DE-627
005 20250208195832.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0582.xml 
035 |a (DE-627)NLM174687206 
035 |a (NLM)17968066 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mao, Yi  |e verfasserin  |4 aut 
245 1 0 |a Sequential document visualization 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 14.12.2007 
500 |a Date Revised 30.10.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Documents and other categorical valued time series are often characterized by the frequencies of short range sequential patterns such as n-grams. This representation converts sequential data of varying lengths to high dimensional histogram vectors which are easily modeled by standard statistical models. Unfortunately, the histogram representation ignores most of the medium and long range sequential dependencies making it unsuitable for visualizing sequential data. We present a novel framework for sequential visualization of discrete categorical time series based on the idea of local statistical modeling. The framework embeds categorical time series as smooth curves in the multinomial simplex summarizing the progression of sequential trends. We discuss several visualization techniques based on the above framework and demonstrate their usefulness for document visualization 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Dillon, Joshua  |e verfasserin  |4 aut 
700 1 |a Lebanon, Guy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 13(2007), 6 vom: 01. Nov., Seite 1208-15  |w (DE-627)NLM098269445  |x 1077-2626  |7 nnns 
773 1 8 |g volume:13  |g year:2007  |g number:6  |g day:01  |g month:11  |g pages:1208-15 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 13  |j 2007  |e 6  |b 01  |c 11  |h 1208-15