|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM16893793X |
003 |
DE-627 |
005 |
20250208025642.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0563.xml
|
035 |
|
|
|a (DE-627)NLM16893793X
|
035 |
|
|
|a (NLM)17356209
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vik, Torbjørn
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Robust pose estimation and recognition using non-gaussian modeling of appearance subspaces
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.05.2007
|
500 |
|
|
|a Date Revised 14.03.2007
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We present an original appearance model that generalizes the usual Gaussian visual subspace model to non-Gaussian and nonparametric distributions. It can be useful for the modeling and recognition of images under difficult conditions such as large occlusions and cluttered backgrounds. Inference under the model is efficiently solved using the mean shift algorithm
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Heitz, Fabrice
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Charbonnier, Pierre
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1998
|g 29(2007), 5 vom: 13. Mai, Seite 901-5
|w (DE-627)NLM098212257
|x 0162-8828
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2007
|g number:5
|g day:13
|g month:05
|g pages:901-5
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2007
|e 5
|b 13
|c 05
|h 901-5
|