Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter

A method using pulse echo ultrasound and the Kalman filter is developed for detecting submicron harmonic motion induced by ultrasonic radiation force. The method estimates the amplitude and phase of the motion at desired locations within a tissue region with high sensitivity. The harmonic motion gen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 54(2007), 2 vom: 01. Feb., Seite 290-300
1. Verfasser: Zheng, Yi (VerfasserIn)
Weitere Verfasser: Chen, Shigao, Tan, Wei, Kinnick, Randall, Greenleaf, James F
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
Beschreibung
Zusammenfassung:A method using pulse echo ultrasound and the Kalman filter is developed for detecting submicron harmonic motion induced by ultrasonic radiation force. The method estimates the amplitude and phase of the motion at desired locations within a tissue region with high sensitivity. The harmonic motion generated by the ultrasound radiation force is expressed as extremely small oscillatory Doppler frequency shifts in the fast time (A-line) of ultrasound echoes, which are difficult to estimate. In slow time (repetitive ultrasound echoes) of the echoes, the motion also is presented as oscillatory phase shifts, from which the amplitude and phase of the harmonic motion can be estimated with the least mean squared error by Kalman filter. This technique can be used to estimate the traveling speed of a harmonic shear wave by tracking its phase changes during propagation. The shear wave propagation speed can be used to solve for the elasticity and viscosity of tissue as reported in our earlier study. Validation and in vitro experiments indicate that the method provides excellent estimations for very small (submicron) harmonic vibrations and has potential for noninvasive and quantitative stiffness measurements of tissues such as artery
Beschreibung:Date Completed 27.03.2007
Date Revised 17.09.2019
published: Print
Citation Status MEDLINE
ISSN:1525-8955