Interlayer coupling in ferroelectric bilayer and superlattice heterostructures

Ferroelectric multilayers and superlattices have gained interest for dynamic random access memory (DRAM) applications and as active elements in tunable microwave devices in the telecommunications industry. A number of experimental studies have shown that these materials have many peculiar properties...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 53(2006), 12 vom: 11. Dez., Seite 2349-56
1. Verfasser: Zhong, Shan (VerfasserIn)
Weitere Verfasser: Alpay, S Pamir, Roytburd, Alexander L, Mantese, Joseph V
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Membranes, Artificial
LEADER 01000caa a22002652 4500
001 NLM167359274
003 DE-627
005 20250207214226.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0558.xml 
035 |a (DE-627)NLM167359274 
035 |a (NLM)17186917 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhong, Shan  |e verfasserin  |4 aut 
245 1 0 |a Interlayer coupling in ferroelectric bilayer and superlattice heterostructures 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.01.2007 
500 |a Date Revised 17.09.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Ferroelectric multilayers and superlattices have gained interest for dynamic random access memory (DRAM) applications and as active elements in tunable microwave devices in the telecommunications industry. A number of experimental studies have shown that these materials have many peculiar properties which cannot be described by a simple series connection of the individual layers that make up the heterostructures. A thermodynamic analysis is presented to demonstrate that ferroelectric multilayers interact through internal elastic, electrical, and electromechanical fields and the strength of the coupling can be quantitatively described using Landau theory of phase transformations, theory of elasticity, and principles of electrostatics. The theoretical analysis shows that compositional variations across ferroelectric bilayers result in a broken spatial inversion symmetry that can lead to asymmetric thermodynamic potentials favoring one ferroelectric ground state over the other. Furthermore, the thermodynamic modeling indicates that there is a strong electrostatic coupling between the layers that leads to the suppression of ferroelectricity at a critical paraelectric layer thickness for ferroelectric-paraelectric bilayers. This bilayer is expected to have a gigantic dielectric response similar to the dielectric anomaly near Curie-Weiss temperature in homogeneous ferroelectrics at this critical thickness 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Membranes, Artificial  |2 NLM 
700 1 |a Alpay, S Pamir  |e verfasserin  |4 aut 
700 1 |a Roytburd, Alexander L  |e verfasserin  |4 aut 
700 1 |a Mantese, Joseph V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1999  |g 53(2006), 12 vom: 11. Dez., Seite 2349-56  |w (DE-627)NLM098181017  |x 0885-3010  |7 nnns 
773 1 8 |g volume:53  |g year:2006  |g number:12  |g day:11  |g month:12  |g pages:2349-56 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 53  |j 2006  |e 12  |b 11  |c 12  |h 2349-56