Uncertainty estimation by convolution using spatial statistics

Kriging has proven to be a useful tool in image processing since it behaves, under regular sampling, as a convolution. Convolution kernels obtained with kriging allow noise filtering and include the effects of the random fluctuations of the experimental data and the resolution of the measuring devic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 10 vom: 08. Okt., Seite 3131-7
1. Verfasser: Sanchez-Brea, Luis Miguel (VerfasserIn)
Weitere Verfasser: Bernabeu, Eusebio
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM165808241
003 DE-627
005 20250207162536.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0553.xml 
035 |a (DE-627)NLM165808241 
035 |a (NLM)17022275 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sanchez-Brea, Luis Miguel  |e verfasserin  |4 aut 
245 1 0 |a Uncertainty estimation by convolution using spatial statistics 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.11.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Kriging has proven to be a useful tool in image processing since it behaves, under regular sampling, as a convolution. Convolution kernels obtained with kriging allow noise filtering and include the effects of the random fluctuations of the experimental data and the resolution of the measuring devices. The uncertainty at each location of the image can also be determined using kriging. However, this procedure is slow since, currently, only matrix methods are available. In this work, we compare the way kriging performs the uncertainty estimation with the standard statistical technique for magnitudes without spatial dependence. As a result, we propose a much faster technique, based on the variogram, to determine the uncertainty using a convolutional procedure. We check the validity of this approach by applying it to one-dimensional images obtained in diffractometry and two-dimensional images obtained by shadow moire 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bernabeu, Eusebio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 10 vom: 08. Okt., Seite 3131-7  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:10  |g day:08  |g month:10  |g pages:3131-7 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 10  |b 08  |c 10  |h 3131-7