|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM162146795 |
003 |
DE-627 |
005 |
20250207064505.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0541.xml
|
035 |
|
|
|a (DE-627)NLM162146795
|
035 |
|
|
|a (NLM)16629268
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Nielsen, Asbjørn Haaning
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.07.2006
|
500 |
|
|
|a Date Revised 10.03.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Kinetics and stoichiometry of aerobic chemical and biological sulfide oxidation in wastewater from sewer networks were studied. In this respect, the effects of temperature and pH were investigated in the ranges 10 to 20 degrees C and 5 to 9, respectively. The temperature dependency of sulfide oxidation kinetics was described using an Arrhenius relationship. The effect of pH on the rate of chemical sulfide oxidation is related to the dissociation of hydrogen sulfide (H2S) to hydrogen sulfide ion (HS(-)), with HS(-) being more readily oxidized than H2S. Biological sulfide oxidation exhibited the highest rates at ambient wastewater pH, and the reaction was inhibited at both low and high pH values. Chemical sulfide oxidation was found to produce thiosulfate and sulfate, while elemental sulfur was the main product of biological sulfide oxidation. Based on the investigations, general rate equations and stoichiometric constants were determined, enabling the processes to be incorporated to conceptual sewer process models
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a Sulfates
|2 NLM
|
650 |
|
7 |
|a Sulfides
|2 NLM
|
650 |
|
7 |
|a Thiosulfates
|2 NLM
|
650 |
|
7 |
|a Sulfur
|2 NLM
|
650 |
|
7 |
|a 70FD1KFU70
|2 NLM
|
650 |
|
7 |
|a Hydrogen Sulfide
|2 NLM
|
650 |
|
7 |
|a YY9FVM7NSN
|2 NLM
|
700 |
1 |
|
|a Vollertsen, Jes
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hvitved-Jacobsen, Thorkild
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 78(2006), 3 vom: 28. März, Seite 275-83
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnas
|
773 |
1 |
8 |
|g volume:78
|g year:2006
|g number:3
|g day:28
|g month:03
|g pages:275-83
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 78
|j 2006
|e 3
|b 28
|c 03
|h 275-83
|