Gaseous reaction mechanism of C2F radical with water

The kinetic properties of the carbon-fluorine radicals are little understood except those of CFn (n =1-3). In this article, a detailed mechanistic study was reported on the gas-phase reaction between the simplest pi-bonded C2F radical and water as the first attempt to understand the chemical reactiv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 27(2006), 3 vom: 01. Feb., Seite 363-7
1. Verfasser: Wang, Jian (VerfasserIn)
Weitere Verfasser: Ding, Yi-Hong, Wu, Gong-Bing, Sun, Chia-Chung
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The kinetic properties of the carbon-fluorine radicals are little understood except those of CFn (n =1-3). In this article, a detailed mechanistic study was reported on the gas-phase reaction between the simplest pi-bonded C2F radical and water as the first attempt to understand the chemical reactivity of the C2F radical. Various reaction channels are considered. The most kinetically competitive channel is the quasi-direct hydrogen-abstraction route forming P5 HCCF + OH. At the CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels, the overall H-abstraction barriers (4.5, 4.7, and 4.2 kcal/mol) for the C2F + H2O reaction are comparable to the corresponding values (5.5, 3.7, and 5.7 kcal/mol) for the analogous C2H + H2O reaction. This suggests that C2F is a reactive radical like the extensively studied C2H, in contrast to the situation of the CF and CF2 radicals that have much lower reactivity than the corresponding hydrocarbon species. Thus, the C2F radical is expected to play an important role in the combustion processes of the carbon-fluorine chemistry. Furthermore, addition of a second H2O can catalyze the reaction with the H-abstraction barrier significantly reduced to a marginally zero value (0.5 kcal/mol). This is also indicative of the potential relevance of the title reactions in the low-temperature atmospheric chemistry
Beschreibung:Date Completed 02.03.2006
Date Revised 03.01.2006
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X