Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor
In this paper, we describe a new method of measuring alkanethiol monolayer formation on a gold surface. A gold-coated millimeter-sized rectangular-shaped lead zirconate titanate (PZT) cantilever of dimensions 3.5 x 2 x 0.05 mm, previously shown to detect a picogram level of mass change, was used to...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1991. - 21(2005), 25 vom: 06. Dez., Seite 11568-73 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2005
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Gold 7440-57-5 |
Zusammenfassung: | In this paper, we describe a new method of measuring alkanethiol monolayer formation on a gold surface. A gold-coated millimeter-sized rectangular-shaped lead zirconate titanate (PZT) cantilever of dimensions 3.5 x 2 x 0.05 mm, previously shown to detect a picogram level of mass change, was used to measure the adsorption kinetics of 1-hexadecanethiol in ethanol over six orders of concentration range (1 nM to 10 mM) in real time. The flexural mode of cantilever vibration, 45.5 +/- 0.01 kHz, was monitored during the self-assembly. The total resonant frequency change obtained for the 1 nM, 10 nM, 100 nM, 1 microM, 4 mM, 8 mM, and 10 mM thiol concentrations were 116 +/- 2 (n = 2), 225 (n = 1), 270 +/- 10 (n = 2), 440 +/- 10 (n = 2), 900 +/- 10 (n = 2), 900 +/- 10 (n = 2), and 900 +/- 10 (n = 2) Hz, respectively. These results compare favorably to literature results in that the rate of the monolayer formation is concentration-dependent and the exponential change during adsorption follows the reversible first-order Langmuir kinetic model. The rate constants of adsorption and desorption were 0.061 M(-1) s(-1) and 3.61 x 10(-4) s(-1), respectively. The significance of the results is that millimeter-sized PZT cantilevers can be used in real-time for characterizing self-assembly of monolayer formation at nanomolar concentration levels. In addition, at 1 nM, the adsorption was found not to be diffusion limited |
---|---|
Beschreibung: | Date Completed 23.04.2016 Date Revised 03.12.2018 published: Print Citation Status MEDLINE |
ISSN: | 0743-7463 |