Conditional filters for image sequence-based tracking--application to point tracking

In this paper, a new conditional formulation of classical filtering methods is proposed. This formulation is dedicated to image sequence-based tracking. These conditional filters allow solving systems whose measurements and state equation are estimated from the image data. In particular, the model t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 14(2005), 1 vom: 25. Jan., Seite 63-79
1. Verfasser: Arnaud, Elise (VerfasserIn)
Weitere Verfasser: Mémin, Etienne, Cernuschi-Frías, Bruno
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article Validation Study
LEADER 01000caa a22002652 4500
001 NLM153075171
003 DE-627
005 20250206040722.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0510.xml 
035 |a (DE-627)NLM153075171 
035 |a (NLM)15646873 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arnaud, Elise  |e verfasserin  |4 aut 
245 1 0 |a Conditional filters for image sequence-based tracking--application to point tracking 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.02.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, a new conditional formulation of classical filtering methods is proposed. This formulation is dedicated to image sequence-based tracking. These conditional filters allow solving systems whose measurements and state equation are estimated from the image data. In particular, the model that is considered for point tracking combines a state equation relying on the optical flow constraint and measurements provided by a matching technique. Based on this, two point trackers are derived. The first one is a linear tracker well suited to image sequences exhibiting global-dominant motion. This filter is determined through the use of a new estimator, called the conditional linear minimum variance estimator. The second one is a nonlinear tracker, implemented from a conditional particle filter. It allows tracking of points whose motion may be only locally described. These conditional trackers significantly improve results in some general situations. In particular, they allow for dealing with noisy sequences, abrupt changes of trajectories, occlusions, and cluttered background 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Validation Study 
700 1 |a Mémin, Etienne  |e verfasserin  |4 aut 
700 1 |a Cernuschi-Frías, Bruno  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 14(2005), 1 vom: 25. Jan., Seite 63-79  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:1  |g day:25  |g month:01  |g pages:63-79 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 1  |b 25  |c 01  |h 63-79