Optimal linear representations of images for object recognition

Although linear representations are frequently used in image analysis, their performances are seldom optimal in specific applications. This paper proposes a stochastic gradient algorithm for finding optimal linear representations of images for use in appearance-based object recognition. Using the ne...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 26(2004), 5 vom: 27. Mai, Seite 662-6
1. Verfasser: Liu, Xiuwen (VerfasserIn)
Weitere Verfasser: Srivastava, Anuj, Gallivan, Kyle
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM151334013
003 DE-627
005 20250205215814.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0505.xml 
035 |a (DE-627)NLM151334013 
035 |a (NLM)15460288 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiuwen  |e verfasserin  |4 aut 
245 1 0 |a Optimal linear representations of images for object recognition 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 26.10.2004 
500 |a Date Revised 15.11.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Although linear representations are frequently used in image analysis, their performances are seldom optimal in specific applications. This paper proposes a stochastic gradient algorithm for finding optimal linear representations of images for use in appearance-based object recognition. Using the nearest neighbor classifier, a recognition performance function is specified and linear representations that maximize this performance are sought. For solving this optimization problem on a Grassmann manifold, a stochastic gradient algorithm utilizing intrinsic flows is introduced. Several experimental results are presented to demonstrate this algorithm 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Srivastava, Anuj  |e verfasserin  |4 aut 
700 1 |a Gallivan, Kyle  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 26(2004), 5 vom: 27. Mai, Seite 662-6  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:5  |g day:27  |g month:05  |g pages:662-6 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 5  |b 27  |c 05  |h 662-6