|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM151334013 |
003 |
DE-627 |
005 |
20250205215814.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0505.xml
|
035 |
|
|
|a (DE-627)NLM151334013
|
035 |
|
|
|a (NLM)15460288
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Xiuwen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Optimal linear representations of images for object recognition
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.10.2004
|
500 |
|
|
|a Date Revised 15.11.2006
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Although linear representations are frequently used in image analysis, their performances are seldom optimal in specific applications. This paper proposes a stochastic gradient algorithm for finding optimal linear representations of images for use in appearance-based object recognition. Using the nearest neighbor classifier, a recognition performance function is specified and linear representations that maximize this performance are sought. For solving this optimization problem on a Grassmann manifold, a stochastic gradient algorithm utilizing intrinsic flows is introduced. Several experimental results are presented to demonstrate this algorithm
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Srivastava, Anuj
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gallivan, Kyle
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1998
|g 26(2004), 5 vom: 27. Mai, Seite 662-6
|w (DE-627)NLM098212257
|x 0162-8828
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2004
|g number:5
|g day:27
|g month:05
|g pages:662-6
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2004
|e 5
|b 27
|c 05
|h 662-6
|