Optimal linear representations of images for object recognition

Although linear representations are frequently used in image analysis, their performances are seldom optimal in specific applications. This paper proposes a stochastic gradient algorithm for finding optimal linear representations of images for use in appearance-based object recognition. Using the ne...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 26(2004), 5 vom: 27. Mai, Seite 662-6
1. Verfasser: Liu, Xiuwen (VerfasserIn)
Weitere Verfasser: Srivastava, Anuj, Gallivan, Kyle
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:Although linear representations are frequently used in image analysis, their performances are seldom optimal in specific applications. This paper proposes a stochastic gradient algorithm for finding optimal linear representations of images for use in appearance-based object recognition. Using the nearest neighbor classifier, a recognition performance function is specified and linear representations that maximize this performance are sought. For solving this optimization problem on a Grassmann manifold, a stochastic gradient algorithm utilizing intrinsic flows is introduced. Several experimental results are presented to demonstrate this algorithm
Beschreibung:Date Completed 26.10.2004
Date Revised 15.11.2006
published: Print
Citation Status MEDLINE
ISSN:0162-8828