Mining pinyin-to-character conversion rules from large-scale corpus : a rough set approach

This paper introduces a rough set technique for solving the problem of mining Pinyin-to-character (PTC) conversion rules. It first presents a text-structuring method by constructing a language information table from a corpus for each pinyin, which it will then apply to a free-form textual corpus. Da...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 2 vom: 24. Apr., Seite 834-44
1. Verfasser: Wang, Xiaolong (VerfasserIn)
Weitere Verfasser: Chen, Qingcai, Yeung, Daniel S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper introduces a rough set technique for solving the problem of mining Pinyin-to-character (PTC) conversion rules. It first presents a text-structuring method by constructing a language information table from a corpus for each pinyin, which it will then apply to a free-form textual corpus. Data generalization and rule extraction algorithms can then be used to eliminate redundant information and extract consistent PTC conversion rules. The design of our model also addresses a number of important issues such as the long-distance dependency problem, the storage requirements of the rule base, and the consistency of the extracted rules, while the performance of the extracted rules as well as the effects of different model parameters are evaluated experimentally. These results show that by the smoothing method, high precision conversion (0.947) and recall rates (0.84) can be achieved even for rules represented directly by pinyin rather than words. A comparison with the baseline tri-gram model also shows good complement between our method and the tri-gram language model
Beschreibung:Date Completed 15.10.2004
Date Revised 08.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1083-4419