Refinement of generated fuzzy production rules by using a fuzzy neural network

Fuzzy production rules (FPRs) have been used for years to capture and represent fuzzy, vague, imprecise and uncertain domain knowledge in many fuzzy systems. There have been a lot of researches on how to generate or obtain FPRs. There exist two methods to obtain FPRs. One is by painstakingly, repeat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 1 vom: 13. Feb., Seite 409-18
1. Verfasser: Tsang, Eric C C (VerfasserIn)
Weitere Verfasser: Yeung, Daniel S, Lee, John W T, Huang, D M, Wang, X Z
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM150443641
003 DE-627
005 20250205201209.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0502.xml 
035 |a (DE-627)NLM150443641 
035 |a (NLM)15369082 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tsang, Eric C C  |e verfasserin  |4 aut 
245 1 0 |a Refinement of generated fuzzy production rules by using a fuzzy neural network 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 15.10.2004 
500 |a Date Revised 08.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fuzzy production rules (FPRs) have been used for years to capture and represent fuzzy, vague, imprecise and uncertain domain knowledge in many fuzzy systems. There have been a lot of researches on how to generate or obtain FPRs. There exist two methods to obtain FPRs. One is by painstakingly, repeatedly and time-consuming interviewing domain experts to extract the domain knowledge. The other is by using some machine learning techniques to generate and extract FPRs from some training samples. These extracted rules, however, are found to be nonoptimal and sometimes redundant. Furthermore, these generated rules suffer from the problem of low accuracy of classifying or recognizing unseen examples. The reasons for having these problems are 1) the FPRs generated are not powerful enough to represent the domain knowledge, 2) the techniques used to generate FPRs are pre-matured, ad-hoc or may not be suitable for the problem, and 3) further refinement of the extracted rules has not been done. In this paper we look into the solutions of the above problems by 1) enhancing the representation power of FPRs by including local and global weights, 2) developing a fuzzy neural network (FNN) with enhanced learning algorithm, and 3) using this FNN to refine the local and global weights of FPRs. By experimenting our method with some existing benchmark examples, the proposed method is found to have high accuracy in classifying unseen samples without increasing the number of the FPRs extracted and the time required to consult with domain experts is greatly reduced 
650 4 |a Journal Article 
700 1 |a Yeung, Daniel S  |e verfasserin  |4 aut 
700 1 |a Lee, John W T  |e verfasserin  |4 aut 
700 1 |a Huang, D M  |e verfasserin  |4 aut 
700 1 |a Wang, X Z  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 34(2004), 1 vom: 13. Feb., Seite 409-18  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:34  |g year:2004  |g number:1  |g day:13  |g month:02  |g pages:409-18 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2004  |e 1  |b 13  |c 02  |h 409-18