SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS
The cytochrome b6f complex functions in oxygenic photosynthetic membranes as the redox link between the photosynthetic reaction center complexes II and I and also functions in proton translocation. It is an ideal integral membrane protein complex in which to study structure and function because of t...
Veröffentlicht in: | Annual review of plant physiology and plant molecular biology. - 1990. - 47(1996) vom: 17. Juni, Seite 477-508 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
1996
|
Zugriff auf das übergeordnete Werk: | Annual review of plant physiology and plant molecular biology |
Schlagworte: | Journal Article |
Zusammenfassung: | The cytochrome b6f complex functions in oxygenic photosynthetic membranes as the redox link between the photosynthetic reaction center complexes II and I and also functions in proton translocation. It is an ideal integral membrane protein complex in which to study structure and function because of the existence of a large amount of primary sequence data, purified complex, the emergence of structures, and the ability of flash kinetic spectroscopy to assay function in a readily accessible ms-100 mus time domain. The redox active polypeptides are cytochromes f and b6 (organelle encoded) and the Rieske iron-sulfur protein (nuclear encoded) in a mol wt = 210,000 dimeric complex that is believed to contain 22-24 transmembrane helices. The high resolution structure of the lumen-side domain of cytochrome f shows it to be an elongate (75 A long) mostly beta-strand, two-domain protein, with the N-terminal alpha-amino group as orthogonal heme ligand and an internal linear 11-A bound water chain. An unusual electron transfer event, the oxidant-induced reduction of a significant fraction of the p (lumen)-side cytochrome b heme by plastosemiquinone indicates that the electron transfer pathway in the b6f complex can be described by a version of the Q-cycle mechanism, originally proposed to describe similar processes in the mitochondrial and bacterial bc1 complexes |
---|---|
Beschreibung: | Date Revised 09.01.2024 published: Print Citation Status Publisher |
ISSN: | 1040-2519 |