Transformation of Human Osteoblast Cells to the Tumorigenic Phenotype by Depleted Uranium-Uranyl Chloride

Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to stud...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental Health Perspectives. - National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare, 1972. - 106(1998), 8, Seite 465-471
1. Verfasser: Miller, Alexandra C. (VerfasserIn)
Weitere Verfasser: Blakely, William F., Livengood, David, Whittaker, Tim, Xu, Jiaquan, Ejnik, John W., Hamilton, Matthew M., Parlette, Eric, St. John, Theodore, Gerstenberg, Henry M., Hsu, Hannah
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:Environmental Health Perspectives
Schlagworte:Alpha radiation Depleted uranium Osteoblast Transformation Physical sciences Biological sciences Health sciences
LEADER 01000caa a22002652 4500
001 JST031308228
003 DE-627
005 20240620200546.0
007 cr uuu---uuuuu
008 150324s1998 xx |||||o 00| ||eng c
024 7 |a 10.2307/3434178  |2 doi 
035 |a (DE-627)JST031308228 
035 |a (JST)3434178 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Miller, Alexandra C.  |e verfasserin  |4 aut 
245 1 0 |a Transformation of Human Osteoblast Cells to the Tumorigenic Phenotype by Depleted Uranium-Uranyl Chloride 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation based on measured intracellular and extracellular uranium levels, showed that few (0.0014%) cell nuclei were hit by alpha particles. We report the ability of DU-uranyl chloride to transform immortalized human osteoblastic cells (HOS) to the tumorigenic phenotype. DU-uranyl chloride-transformants are characterized by anchorage-independent growth, tumor formation in nude mice, expression of high levels of the k-ras oncogene, reduced production of the Rb tumor-suppressor protein, and elevated levels of sister chromatid exchanges per cell. DU-uranyl chloride treatment resulted in a 9.6 (± 2.8)-fold increase in transformation frequency compared to untreated cells. In comparison, nickel sulfate resulted in a 7.1 (± 2.1)-fold increase in transformation frequency. This is the first report showing that a DU compound caused human cell transformation to the neoplastic phenotype. Although additional studies are needed to determine if protracted DU exposure produces tumors in vivo, the implication from these in vitro results is that the risk of cancer induction from internalized DU exposure may be comparable to other biologically reactive and carcinogenic heavy-metal compounds (e.g., nickel). 
650 4 |a Alpha radiation 
650 4 |a Depleted uranium 
650 4 |a Osteoblast 
650 4 |a Transformation 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Metals  |x Uranium 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x Transformed cell line 
650 4 |a Health sciences  |x Medical conditions  |x Diseases  |x Neoplasia  |x Tumors 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Functional groups  |x Acetates  |x Lead acetates 
650 4 |a Physical sciences  |x Physics  |x Microphysics  |x Particle physics  |x Subatomic particles  |x Bosons  |x Alpha particles 
650 4 |a Health sciences  |x Health and wellness  |x Public health  |x Health hazards  |x Chemical hazards 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x Tumor cell line 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Phenotypes 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Halogen compounds  |x Chlorine compounds  |x Chlorides  |x Research 
655 4 |a research-article 
700 1 |a Blakely, William F.  |e verfasserin  |4 aut 
700 1 |a Livengood, David  |e verfasserin  |4 aut 
700 1 |a Whittaker, Tim  |e verfasserin  |4 aut 
700 1 |a Xu, Jiaquan  |e verfasserin  |4 aut 
700 1 |a Ejnik, John W.  |e verfasserin  |4 aut 
700 1 |a Hamilton, Matthew M.  |e verfasserin  |4 aut 
700 1 |a Parlette, Eric  |e verfasserin  |4 aut 
700 1 |a St. John, Theodore  |e verfasserin  |4 aut 
700 1 |a Gerstenberg, Henry M.  |e verfasserin  |4 aut 
700 1 |a Hsu, Hannah  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental Health Perspectives  |d National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare, 1972  |g 106(1998), 8, Seite 465-471  |w (DE-627)34134639X  |w (DE-600)2067353-X  |x 00916765  |7 nnns 
773 1 8 |g volume:106  |g year:1998  |g number:8  |g pages:465-471 
856 4 0 |u https://www.jstor.org/stable/3434178  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/3434178  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 106  |j 1998  |e 8  |h 465-471