Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm

Different people may use different strategies, or decision rules, when solving complex decision problems. We provide a new Bayesian procedure for drawing inferences about the nature and number of decision rules present in a population, and use it to analyze the behaviors of laboratory subjects confr...

Description complète

Détails bibliographiques
Publié dans:Econometrica. - Wiley. - 72(2004), 3, Seite 781-822
Auteur principal: Houser, Daniel (Auteur)
Autres auteurs: Keane, Michael, McCabe, Kevin
Format: Article en ligne
Langue:English
Publié: 2004
Accès à la collection:Econometrica
Sujets:Dynamic programming Gibbs sampling Bayesian decision theory Experimental economics Behavioral economics Heuristics Behavioral sciences Mathematics Philosophy Economics Applied sciences
LEADER 01000caa a22002652c 4500
001 JST028777549
003 DE-627
005 20240620164833.0
007 cr uuu---uuuuu
008 150324s2004 xx |||||o 00| ||eng c
035 |a (DE-627)JST028777549 
035 |a (JST)3598835 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Houser, Daniel  |e verfasserin  |4 aut 
245 1 0 |a Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Different people may use different strategies, or decision rules, when solving complex decision problems. We provide a new Bayesian procedure for drawing inferences about the nature and number of decision rules present in a population, and use it to analyze the behaviors of laboratory subjects confronted with a difficult dynamic stochastic decision problem. Subjects practiced before playing for money. Based on money round decisions, our procedure classifies subjects into three types, which we label "Near Rational," "Fatalist," and "Confused." There is clear evidence of continuity in subjects' behaviors between the practice and money rounds: types who performed best in practice also tended to perform best when playing for money. However, the agreement between practice and money play is far from perfect. The divergences appear to be well explained by a combination of type switching (due to learning and/or increased effort in money play) and errors in our probabilistic type assignments. 
540 |a Copyright 2004 Econometric Society 
650 4 |a Dynamic programming 
650 4 |a Gibbs sampling 
650 4 |a Bayesian decision theory 
650 4 |a Experimental economics 
650 4 |a Behavioral economics 
650 4 |a Heuristics 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Cognitive processes  |x Decision making  |x Economic decision rule 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Polynomials 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical models  |x Parametric models 
650 4 |a Philosophy  |x Metaphysics  |x Etiology  |x Determinism  |x Fatalism 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Finance  |x Financial investments  |x Investment returns  |x Investment return rates  |x Return on investment 
650 4 |a Economics  |x Economic disciplines  |x Applied economics  |x Economic modeling  |x Economic models 
650 4 |a Behavioral sciences  |x Leisure studies  |x Recreation  |x Games 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Normal distribution curve  |x Standard deviation 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Cognitive processes  |x Decision making 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
655 4 |a research-article 
700 1 |a Keane, Michael  |e verfasserin  |4 aut 
700 1 |a McCabe, Kevin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Econometrica  |d Wiley  |g 72(2004), 3, Seite 781-822  |w (DE-627)270425721  |w (DE-600)1477253-X  |x 14680262  |7 nnas 
773 1 8 |g volume:72  |g year:2004  |g number:3  |g pages:781-822 
856 4 0 |u https://www.jstor.org/stable/3598835  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_165 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_184 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2579 
912 |a GBV_ILN_2586 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2940 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4027 
912 |a GBV_ILN_4028 
912 |a GBV_ILN_4029 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4116 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4155 
912 |a GBV_ILN_4219 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4266 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4309 
912 |a GBV_ILN_4310 
912 |a GBV_ILN_4311 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4314 
912 |a GBV_ILN_4315 
912 |a GBV_ILN_4316 
912 |a GBV_ILN_4317 
912 |a GBV_ILN_4318 
912 |a GBV_ILN_4319 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4598 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 72  |j 2004  |e 3  |h 781-822